CS636: Systems Basics

Swarnendu Biswas

Semester 2018-2019-1|
CSE, lIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

-

Two things primary in Systems:
* Performance
* Power

_

What is Performance?

(

Execution time = Time (s) taken by a program to execute

.

Measure Performance

(

Execution time = Time (s) taken by a program to execute

.

4 L. . . .
e Execution time — time from start till end of the computation

Tl
e Speedup - =

9 p

What is Performance?

(

Execution time = Time (s) taken by a program to execute
G

Exec time = Time to execute # instrs in the program

What is Performance?

(

Execution time = Time (s) taken by a program to execute

.

Exec time = Time to execute # instrs in the program

instrs

Exec time = x Time to execute 1 instr
program

What is Performance?

(

Execution time = Time (s) taken by a program to execute

.

H# instrs

Exec time = x Time to execute 1 instr
program

instrs # cycles

Exec time = * — * Time to execute 1 cycle
program Instr

What is Performance?

(

Execution time = Time (s) taken by a program to execute

.

instrs # cycles

Exec time = * — * Time to execute 1 cycle
program Instr

instrs # cycles time (s)
X X

Exec time = .
program instr cycle

What is Performance?

(

Execution time = Time (s) taken by a program to execute

.

H# Instrs

Exec time = * CPI *
program freq

What is Performance?

(

o

N

Performance < frequency

1

Performance &« —
CPI

\

Buying Performance with Technological
Innovations

* 1986 — 2005

* Performance of microprocessors increased by ~50% per year

* Programs ran faster by themselves
* We did not worry about performance

* Parallel computing, concurrent programming, and HPC were jobs for
specialists

Moore’s Law

Any volunteers?

CS636 Swarnendu Biswas 12

Moore’s Law

 Number of transistors on chip doubles every year
* 1965
* Recalibrated it later in 70’s to say “doubles every two years”

* David House from Intel said “improvements would cause
performance to double every 18 months”

Moore’s Law

 Number of transistors on chip doubles every year
* 1965
* Recalibrated it later in 70’s to say “doubles every two years”

* David House from Intel said “improvements would cause
performance to double every 18 months”

[“Moore’s law is a violation of Murphy’s law.” J

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016) SUsGE

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products - are
strongly linked to Moore's law.

in Data

20,000,000,000 0 19 Srovaos Conbicme: o
10,000,000,000 18-00r0 Xnon Haswed- Es
Xbeix Orwd main Soc\ Q@ 22-come Xoon Beoadwod-£5
5,000,000,000 61 cotoxoot\ .‘ W'WM Bridge-EX
8.come w'mi A&%\ncaom ‘motde SoC)
mxgnoo. " 02008 Cors T HARNPEE core i7 Broadwelt-s
D“”:““ ”. ouoamawcczu‘ornwmsimx
“Core + {7 Haswol
1,000,000,000 """"“"m“ Qﬁmzvg Ie, Crooie A7 (ual-coro ARMES "modie SoC')
500,000,000 tanum 2 Madeon 6M@ .6595‘ &n"W‘“‘ s
Poatiem D Smerseids,
Harum 2 McKinkey @ ‘C«'?MWMSM
et fresai® ReSmna i
100,000,000 AOKED B 4 Proscont
Pontrm 4 Nort
= 50,000,000 mmwmmm oo
3 Pantiam I| Mobde @ARM Cortex:A9
8 AMOD QPwun 1M Copporming
= M
o 10,000,000 AMD KB, R s
7]
@ 5,000,000 i 3 s
g Peatme, AMD K5
’: SA110
Inted 80486,
1,000,000 * Shuoco
500,000 TsfRsnatie sedioo
el 00369, Jntel o, @ARM3
Metieols 68020 @
100,000 g, s &
50,000 @unes0ns '
Intel 80804 €@ Inted BOSS e@ QARU A& 6
10,000 TSj0 gz OGS 2 °~<’§}31e
; ® pcare d
5,000 w 2080 0
intel 8008g, | s
Inted -&M Nw‘
1,000
QS AV A> Do D Vv S 4l o) 3 > 0
»é\»é\é\'é\é\:@@%‘b@»@ Q@@q\ \qg& @‘* @\q,ﬁ"«&"
Year of introduction
Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OQurWoridinData.org. There you find more visualizations and research on this topic. Licensed under CC-BY-SA by the author Max Roser.
CS636 Swarnendu Biswas

16

42 Years of Microprocessor Trend Data

/2 S S S _
10 ; “ Transistors
| thousands
X S S ()
10° _ ___ | Single-Thread
Performance 3
104 | (SpecINT x 107)
Frequency (MHz)
10° e
Typical Power
102 F A 1 (Watts)
1 A Number of
10 B = = _ v Logical Cores
A . h 4
whgt o 3o I
| | | |
1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2017 by K. Rupp

Challenges to Growth in Performance

(-)

Clock speeds are not increasing any more
g J

Clock speeds are stagnating!

25
20
N
b
@ 15
g
o
8 10
(1]
2007 Roadmap —
5 - L=y = “ E———
Intel multicore
0 | | | |] |
2001 2003 2005 2007 2009 2011 2013

K. Asanovic et al. A View of the Parallel Computing Laandscape. CACM, Oct 20089.

CS636

Swarnendu Biswas

20

Power Wall

b

* Power, and not manufacturing, limits microarchitectural
improvements — F. Pollack

-

Dynamic power = Capacitive load x Voltage x
Frequency

~

J

Surface of the Sun —p;."'
#*

L4
Rocket Nozzle —)’"
#
#

*

1000

100

Watts/cm 2

10

15 107 05 0.35 0.250.18 0.13 0.1 0.07

Minumum IC Feature size
in microns

Mark Smotherman. https://people.cs.clemson.edu/~mark/330/power_density.gif

CS636 Swarnendu Biswas

23

@

Reducing Power

e Suppose a new CPU version has
* 90% capacitive load of the old CPU version
* 10% reduction in voltage
* 10% reduction in frequency
 What is the impact to the power consumption of the new CPU version?

Other Challenges Going Forward!

* Reliability challenges with smaller processes
e ~7nm?

* More interference, structural defects with Process-Voltage-Temperature (PVT)
variations

Hardware Trends in the Last Ten Years!

* 2005 - 2018

 Single core performance increase is ~20%

* Programs do not run any faster by itself

Microarchitectural Techniques

* Add more functional units to improve ILP
e Superscalar architecture
e VLIW
* More cache structures (e.g., L4 caches)
* Deeper pipelines

Microarchitectural Techniques

* Add more functional units to improve ILP
e Superscalar architecture

o VLIW
* More cache g
* Deeper pipel

(

.

Law of diminishing returns!

J

Multicore Architecture

 Make effective use of the extra transistors
* New prediction: # cores will double every two years

* We also have manycore machines

What is the software side of

the story?

Develop Parallel Programs

éom my perspective, parallelism is the biggest challenge since high-level \
programming languages. It’s the biggest thing in 50 years because industry is

betting its future that parallel programming will be useful.

Industry is building parallel hardware, assuming people can use it. And | think
there’s a chance they’ll fail since the software is not necessarily in place. So this
is a gigantic challenge facing the computer science community.

(David Patterson, ACM Queue, 2006. /

Develop Parallel Programs

To save the IT industry, researchers must demonstrate
greater end-user value of from an increasing number of

cores —
A View of Parallel Computing Landscape, CACM 20009.

- v

New Challenges in Software Development

* Adapt to the changing hardware landscape

* Most applications are single-threaded

(

.

How can we develop software that makes
effective use of the extra hardware?

~\

J

Challenges in Developing Parallel Programs

* Programmers tend to think sequentially
* Correctness issues — concurrency bugs like data races and deadlocks
* Performance issues — minimize communication across cores

* Amdahl’s law
* Overheads of parallel execution
* Other challenges: load balancing

Programmer’s
p tend to think
sequentially

CS636 Swarnendu Biswas

Dekker’s Algorithm Q

TABLE 3.3: Can Both rl1 and r2 be Set to 0?

Core C1 Core C2 Comments
S1: x = NEW; S2:y =NEW: /* Initially, x =0 & y = 0%/
LI:rl =vy; L2:12=x;

CS636

Swarnendu Biswas

38

A Java Snippet

Object X = null;
boolean done= false;

Thread T1 Thread T2

X = new Object(); while (!done) {}
done = true; X.compute();

@

A Java Snippet

Object X = null;
boolean done= false;

Thread T1 Thread T2
X = new Object(); while (!done) {}
done = true; X.compute();
4)

What are some possible outcomes?
. J

Thread T1 Thread T2

4 N 4

X = new Object();
temp = done; Infinite loop

while (!temp) {}

done = true;
g J N

Thread T1 Thread T2

done = true;

while (!done) {}
X.compute();

X = new Object();

- J -

We will see more of this later!

Amdahl’s Law

* Intuitive observation

Any volunteers?

CS636 Swarnendu Biswas 43

Amdahl’s Law

* Intuitive observation

CS636

f

G

Even if most of the program can be parallelized,
the benefits of parallel execution are limited

~

J

Swarnendu Biswas

44

Example of Amdahl’s [aw Q

e Suppose you are traveling from Kanpur to Lucknow.
* You travel from Kanpur to Lucknow at 50 kmph.
* You travel back from Lucknow to Kanpur at the speed of light.
 What is your average speed?

Amdahl’s Law Formulation

* Let a program P have N operations
* Assumption: An operation (executed serially) takes one time unit
* Time taken to execute P: N

* Let proportion P of the program be parallelizable
* Time taken for the serial portion = (1 — P)N
* Assume parallel portion can be accelerated by a factor of s

* Time taken by optimized implementation: (1 — P)N + %

Amdahl’s Law Formulation

Execution time of original program

e Speedup factor: . , —
Execution time of optimized program

B N
(1-p)N+§
1

P
(1—P)+E

Nuances of Amdahl’s Law

4) A
Speed up = =
(1-P)+=
N >
4 N
Even if speed up factor s 2> o
Speed up = —
peed up = E
\ J

Speedup

20

Amdahl's Law

Number of processors

..--""""“__“__-_ -1 1 | |
=TT
/,/
/ Parallel portion
/ ~——— 50%
ff 75%
/ —.— 90%
// —— 95%
/ o
o~
Py
v
e
w w [=t w w o~ = o w o~ = w
= ¢ § g @ 8 3 8 3 g ¢

65536

https://en.wikipedia.org/wiki/Amdahl%27s_law

CS636

Swarnendu Biswas

49

Compute speed up Q

e Suppose we have a program P that is composed of three modules A,
B, and C. A takes up 20%, B takes 30%, and C takes 50%.

e Suppose we run P on new hardware that speeds up A by 50% and B
by 4X but does not impact C.

 What is the overall speedup of P?

Gustafson’s Law

 Amdahl’s Law assumes that the problem size does not change with
number of resources

e Gustafson’s Law

 Computation time is constant instead of problem size
* Increase resources to solve bigger computational problems in the same time

System Assumptions (same as Amdahl’s Law
derivation)
 Let us assume a program with N operations

* Assumption: An operation (executed serially) takes one time unit
* Time taken to execute the program: N

* Let proportion P of the program be parallelizable
* Assume parallel portion can be accelerated by a factor of s

Gustafson’s Law

* Now that we have more resources, the execution time will hopefully
decrease

* But the goal is to do more work in the original execution time

e Original problem size (Amdahl’s law): PN + (1 — P)N
* New problem size: PsN + (1 — P)N

 Execution time on single processor: PsN + (1 — P)N

PsSN

* Execution time on multiprocessor: — +(1—P)N

Gustafson’s Law

* Original problem size (Amdahl’s law): PN + (1 — P)N
* New problem size: PsN + (1 — P)N

 Execution time on single processor: PsN + (1 — P)N

. : . PsN
* Execution time on multiprocessor: % + (1 —-P)N

. _PsN+ (1-P)N _ Ps+(1-P) _ _
Speedup: @+(1—P)N = TP Ps+(1—-P)

Amdahl’s vs Gustafson’s Law

p
Amdahl’s law — If you have 10 more CPUs, then how fast
can you solve a given problem?

.

~\

p
Gustafson’s law — Having 10 more CPUs allows you to solve

3 larger problem in the same amount of time.

\

References

* Keshav Pingali — CS 377P: Programming for Performance, UT Austin.

* D. Sorin et al. — A Primer on Memory Consistency and Cache Coherence

