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Two things primary in Systems:
• Performance
• Power



What is Performance?
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Execution time  = Time (s) taken by a program to execute



Measure Performance
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Execution time  = Time (s) taken by a program to execute

• Execution time – time from start till end of the computation

• Speedup -
𝑇

1

𝑇
𝑝



What is Performance?

CS636 Swarnendu Biswas 5

Execution time  = Time (s) taken by a program to execute

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 = 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 # 𝑖𝑛𝑠𝑡𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑔𝑟𝑎𝑚



What is Performance?

CS636 Swarnendu Biswas 6

Execution time  = Time (s) taken by a program to execute

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 = 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 # 𝑖𝑛𝑠𝑡𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑔𝑟𝑎𝑚

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 =
# 𝑖𝑛𝑠𝑡𝑟𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
∗ 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 1 𝑖𝑛𝑠𝑡𝑟



What is Performance?

CS636 Swarnendu Biswas 7

Execution time  = Time (s) taken by a program to execute

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 =
# 𝑖𝑛𝑠𝑡𝑟𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
∗ 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 1 𝑖𝑛𝑠𝑡𝑟

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 =
# 𝑖𝑛𝑠𝑡𝑟𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
∗

# 𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟
∗ 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 1 𝑐𝑦𝑐𝑙𝑒



What is Performance?

CS636 Swarnendu Biswas 8

Execution time  = Time (s) taken by a program to execute

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 =
# 𝑖𝑛𝑠𝑡𝑟𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
∗

# 𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟
∗ 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 1 𝑐𝑦𝑐𝑙𝑒

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 =
# 𝑖𝑛𝑠𝑡𝑟𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
∗

# 𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟
∗

time (s)
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Execution time  = Time (s) taken by a program to execute

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 =
# 𝑖𝑛𝑠𝑡𝑟𝑠
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Performance ∝ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

Performance ∝  
1

𝐶𝑃𝐼



Buying Performance with Technological 
Innovations
• 1986 – 2005

• Performance of microprocessors increased by ~50% per year

• Programs ran faster by themselves
• We did not worry about performance

• Parallel computing, concurrent programming, and HPC were jobs for 
specialists

CS636 Swarnendu Biswas 11



Moore’s Law
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Any volunteers?



Moore’s Law

• Number of transistors on chip doubles every year
• 1965

• Recalibrated it later in 70’s to say “doubles every two years”

• David House from Intel said “improvements would cause 
performance to double every 18 months”
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“Moore’s law is a violation of Murphy’s law.”
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Challenges to Growth in Performance 
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Clock speeds are not increasing any more



Clock speeds are stagnating!
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K. Asanovic et al. A View of the Parallel Computing Laandscape. CACM, Oct 2009.



Power Wall

• Power, and not manufacturing, limits microarchitectural 
improvements – F. Pollack 
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Dynamic power = Capacitive load x Voltage x   
Frequency
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Mark Smotherman. https://people.cs.clemson.edu/~mark/330/power_density.gif



Reducing Power

• Suppose a new CPU version has 
• 90% capacitive load of the old CPU version

• 10% reduction in voltage

• 10% reduction in frequency

• What is the impact to the power consumption of the new CPU version?
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Other Challenges Going Forward!

• Reliability challenges with smaller processes
• ~7nm?

• More interference, structural defects with Process-Voltage-Temperature (PVT) 
variations
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Hardware Trends in the Last Ten Years!

• 2005 – 2018 
• Single core performance increase is ~20%

• Programs do not run any faster by itself
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Microarchitectural Techniques

• Add more functional units to improve ILP
• Superscalar architecture

• VLIW

• More cache structures (e.g., L4 caches)

• Deeper pipelines
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Law of diminishing returns!



Multicore Architecture

• Make effective use of the extra transistors

• New prediction: # cores will double every two years

• We also have manycore machines
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What is the software side of 
the story?
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Develop Parallel Programs
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From my perspective, parallelism is the biggest challenge since high-level 
programming languages. It’s the biggest thing in 50 years because industry is 
betting its future that parallel programming will be useful.
… 
Industry is building parallel hardware, assuming people can use it. And I think 
there’s a chance they’ll fail since the software is not necessarily in place. So this 
is a gigantic challenge facing the computer science community.

– David Patterson, ACM Queue, 2006.



Develop Parallel Programs
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To save the IT industry, researchers must demonstrate 
greater end-user value of from an increasing number of 

cores –
A View of Parallel Computing Landscape, CACM 2009.



New Challenges in Software Development

• Adapt to the changing hardware landscape

• Most applications are single-threaded
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How can we develop software that makes 
effective use of the extra hardware?



Challenges in Developing Parallel Programs

• Programmers tend to think sequentially
• Correctness issues – concurrency bugs like data races and deadlocks

• Performance issues – minimize communication across cores

• Amdahl’s law

• Overheads of parallel execution

• Other challenges: load balancing
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Programmer’s 
tend to think 
sequentially
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Dekker’s Algorithm
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A Java Snippet

X = new Object();
done = true;

Thread T1

while (!done) {}
X.compute();

Thread T2

Object X = null;
boolean done= false;



A Java Snippet

X = new Object();
done = true;

Thread T1

while (!done) {}
X.compute();

Thread T2

Object X = null;
boolean done= false;

What are some possible outcomes?



done = true;

X = new Object();

while (!done) {} 
X.compute();

Thread T1 Thread T2

NPE

X = new Object();

done = true;

temp = done;

while (!temp) {} 

Thread T1 Thread T2

Infinite loop



We will see more of this later!
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Amdahl’s Law

• Intuitive observation
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Any volunteers?



Amdahl’s Law

• Intuitive observation
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Even if most of the program can be parallelized, 
the benefits of parallel execution are limited



Example of Amdahl’s law

• Suppose you are traveling from Kanpur to Lucknow.
• You travel from Kanpur to Lucknow at 50 kmph.

• You travel back from Lucknow to Kanpur at the speed of light.

• What is your average speed?
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Amdahl’s Law Formulation

• Let a program P have N operations 

• Assumption: An operation (executed serially) takes one time unit

• Time taken to execute P: 𝑁

• Let proportion P of the program be parallelizable 

• Time taken for the serial portion = 1 − 𝑃 𝑁

• Assume parallel portion can be accelerated by a factor of s

• Time taken by optimized implementation: 1 − 𝑃 𝑁 +
𝑃𝑁

𝑠
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Amdahl’s Law Formulation

• Speedup factor: =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑝𝑟𝑜𝑔𝑟𝑎𝑚

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑝𝑟𝑜𝑔𝑟𝑎𝑚
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=
1

(1 − 𝑃) +
𝑃
𝑠

=
𝑁

𝐼 − 𝑃 𝑁 +
𝑃
𝑠



Nuances of Amdahl’s Law
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Even if speed up factor s ∞

Speed up = 
1

1−𝑃

Speed up =
1

(1−𝑃)+
𝑃

𝑠
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https://en.wikipedia.org/wiki/Amdahl%27s_law



Compute speed up

• Suppose we have a program P that is composed of three modules A, 
B, and C. A takes up 20%, B takes 30%, and C takes 50%. 

• Suppose we run P on new hardware that speeds up A by 50% and B 
by 4X but does not impact C. 

• What is the overall speedup of P?
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Gustafson’s Law

• Amdahl’s Law assumes that the problem size does not change with 
number of resources

• Gustafson’s Law
• Computation time is constant instead of problem size

• Increase resources to solve bigger computational problems in the same time
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System Assumptions (same as Amdahl’s Law 
derivation)
• Let us assume a program with 𝑁 operations 

• Assumption: An operation (executed serially) takes one time unit

• Time taken to execute the program: 𝑁

• Let proportion P of the program be parallelizable 

• Assume parallel portion can be accelerated by a factor of s
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Gustafson’s Law

• Now that we have more resources, the execution time will hopefully 
decrease

• But the goal is to do more work in the original execution time

• Original problem size (Amdahl’s law): 𝑃𝑁 + 1 − 𝑃 𝑁

• New problem size: 𝑃𝑠𝑁 + 1 − 𝑃 𝑁

• Execution time on single processor: 𝑃𝑠𝑁 + 1 − 𝑃 𝑁

• Execution time on multiprocessor: 
𝑃𝑠𝑁

𝑠
+ 1 − 𝑃 𝑁
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Gustafson’s Law

• Original problem size (Amdahl’s law): 𝑃𝑁 + 1 − 𝑃 𝑁

• New problem size: 𝑃𝑠𝑁 + 1 − 𝑃 𝑁

• Execution time on single processor: 𝑃𝑠𝑁 + 1 − 𝑃 𝑁

• Execution time on multiprocessor: 
𝑃𝑠𝑁

𝑠
+ 1 − 𝑃 𝑁

• Speedup: 
𝑃𝑠𝑁+ 1−𝑃 𝑁
𝑃𝑠𝑁

𝑠
+ 1−𝑃 𝑁

=
𝑃𝑠+ 1−𝑃

𝑃+(1−𝑃)
= 𝑃𝑠 + (1 − 𝑃)
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Amdahl’s vs Gustafson’s Law
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Amdahl’s law – If you have 10 more CPUs, then how fast   
can you solve a given problem? 

Gustafson’s law – Having 10 more CPUs allows you to solve 
a larger problem in the same amount of time.
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