
CS636: Systems Basics
Swarnendu Biswas

Semester 2018-2019-II

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

CS636 Swarnendu Biswas 2

Two things primary in Systems:
• Performance
• Power

What is Performance?

CS636 Swarnendu Biswas 3

Execution time = Time (s) taken by a program to execute

Measure Performance

CS636 Swarnendu Biswas 4

Execution time = Time (s) taken by a program to execute

• Execution time – time from start till end of the computation

• Speedup -
𝑇

1

𝑇
𝑝

What is Performance?

CS636 Swarnendu Biswas 5

Execution time = Time (s) taken by a program to execute

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 = 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 # 𝑖𝑛𝑠𝑡𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑔𝑟𝑎𝑚

What is Performance?

CS636 Swarnendu Biswas 6

Execution time = Time (s) taken by a program to execute

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 = 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 # 𝑖𝑛𝑠𝑡𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑔𝑟𝑎𝑚

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 =
𝑖𝑛𝑠𝑡𝑟𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
∗ 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 1 𝑖𝑛𝑠𝑡𝑟

What is Performance?

CS636 Swarnendu Biswas 7

Execution time = Time (s) taken by a program to execute

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 =
𝑖𝑛𝑠𝑡𝑟𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
∗ 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 1 𝑖𝑛𝑠𝑡𝑟

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 =
𝑖𝑛𝑠𝑡𝑟𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
∗

𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟
∗ 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 1 𝑐𝑦𝑐𝑙𝑒

What is Performance?

CS636 Swarnendu Biswas 8

Execution time = Time (s) taken by a program to execute

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 =
𝑖𝑛𝑠𝑡𝑟𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
∗

𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟
∗ 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 1 𝑐𝑦𝑐𝑙𝑒

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 =
𝑖𝑛𝑠𝑡𝑟𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
∗

𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟
∗

time (s)

cycle

What is Performance?

CS636 Swarnendu Biswas 9

Execution time = Time (s) taken by a program to execute

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 =
𝑖𝑛𝑠𝑡𝑟𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
∗ 𝐶𝑃𝐼 ∗

1

𝑓𝑟𝑒𝑞

What is Performance?

CS636 Swarnendu Biswas 10

Execution time = Time (s) taken by a program to execute

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 =
𝑖𝑛𝑠𝑡𝑟𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
∗ 𝐶𝑃𝐼 ∗

1

𝑓𝑟𝑒𝑞

Performance ∝ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

Performance ∝
1

𝐶𝑃𝐼

Buying Performance with Technological
Innovations
• 1986 – 2005

• Performance of microprocessors increased by ~50% per year

• Programs ran faster by themselves
• We did not worry about performance

• Parallel computing, concurrent programming, and HPC were jobs for
specialists

CS636 Swarnendu Biswas 11

Moore’s Law

CS636 Swarnendu Biswas 12

Any volunteers?

Moore’s Law

• Number of transistors on chip doubles every year
• 1965

• Recalibrated it later in 70’s to say “doubles every two years”

• David House from Intel said “improvements would cause
performance to double every 18 months”

CS636 Swarnendu Biswas 13

Moore’s Law

• Number of transistors on chip doubles every year
• 1965

• Recalibrated it later in 70’s to say “doubles every two years”

• David House from Intel said “improvements would cause
performance to double every 18 months”

CS636 Swarnendu Biswas 14

“Moore’s law is a violation of Murphy’s law.”

CS636 Swarnendu Biswas 16

CS636 Swarnendu Biswas 17

Challenges to Growth in Performance

CS636 Swarnendu Biswas 19

Clock speeds are not increasing any more

Clock speeds are stagnating!

CS636 Swarnendu Biswas 20

K. Asanovic et al. A View of the Parallel Computing Laandscape. CACM, Oct 2009.

Power Wall

• Power, and not manufacturing, limits microarchitectural
improvements – F. Pollack

CS636 Swarnendu Biswas 22

Dynamic power = Capacitive load x Voltage x
Frequency

CS636 Swarnendu Biswas 23

Mark Smotherman. https://people.cs.clemson.edu/~mark/330/power_density.gif

Reducing Power

• Suppose a new CPU version has
• 90% capacitive load of the old CPU version

• 10% reduction in voltage

• 10% reduction in frequency

• What is the impact to the power consumption of the new CPU version?

CS636 Swarnendu Biswas 24

Other Challenges Going Forward!

• Reliability challenges with smaller processes
• ~7nm?

• More interference, structural defects with Process-Voltage-Temperature (PVT)
variations

CS636 Swarnendu Biswas 25

Hardware Trends in the Last Ten Years!

• 2005 – 2018
• Single core performance increase is ~20%

• Programs do not run any faster by itself

CS636 Swarnendu Biswas 26

Microarchitectural Techniques

• Add more functional units to improve ILP
• Superscalar architecture

• VLIW

• More cache structures (e.g., L4 caches)

• Deeper pipelines

CS636 Swarnendu Biswas 27

Microarchitectural Techniques

• Add more functional units to improve ILP
• Superscalar architecture

• VLIW

• More cache structures (e.g., L4 caches)

• Deeper pipelines

CS636 Swarnendu Biswas 28

Law of diminishing returns!

Multicore Architecture

• Make effective use of the extra transistors

• New prediction: # cores will double every two years

• We also have manycore machines

CS636 Swarnendu Biswas 31

What is the software side of
the story?

CS636 Swarnendu Biswas 32

Develop Parallel Programs

CS636 Swarnendu Biswas 33

From my perspective, parallelism is the biggest challenge since high-level
programming languages. It’s the biggest thing in 50 years because industry is
betting its future that parallel programming will be useful.
…
Industry is building parallel hardware, assuming people can use it. And I think
there’s a chance they’ll fail since the software is not necessarily in place. So this
is a gigantic challenge facing the computer science community.

– David Patterson, ACM Queue, 2006.

Develop Parallel Programs

CS636 Swarnendu Biswas 34

To save the IT industry, researchers must demonstrate
greater end-user value of from an increasing number of

cores –
A View of Parallel Computing Landscape, CACM 2009.

New Challenges in Software Development

• Adapt to the changing hardware landscape

• Most applications are single-threaded

CS636 Swarnendu Biswas 35

How can we develop software that makes
effective use of the extra hardware?

Challenges in Developing Parallel Programs

• Programmers tend to think sequentially
• Correctness issues – concurrency bugs like data races and deadlocks

• Performance issues – minimize communication across cores

• Amdahl’s law

• Overheads of parallel execution

• Other challenges: load balancing

CS636 Swarnendu Biswas 36

Programmer’s
tend to think
sequentially

CS636 Swarnendu Biswas 37

Dekker’s Algorithm

CS636 Swarnendu Biswas 38

A Java Snippet

X = new Object();
done = true;

Thread T1

while (!done) {}
X.compute();

Thread T2

Object X = null;
boolean done= false;

A Java Snippet

X = new Object();
done = true;

Thread T1

while (!done) {}
X.compute();

Thread T2

Object X = null;
boolean done= false;

What are some possible outcomes?

done = true;

X = new Object();

while (!done) {}
X.compute();

Thread T1 Thread T2

NPE

X = new Object();

done = true;

temp = done;

while (!temp) {}

Thread T1 Thread T2

Infinite loop

We will see more of this later!

CS636 Swarnendu Biswas 42

Amdahl’s Law

• Intuitive observation

CS636 Swarnendu Biswas 43

Any volunteers?

Amdahl’s Law

• Intuitive observation

CS636 Swarnendu Biswas 44

Even if most of the program can be parallelized,
the benefits of parallel execution are limited

Example of Amdahl’s law

• Suppose you are traveling from Kanpur to Lucknow.
• You travel from Kanpur to Lucknow at 50 kmph.

• You travel back from Lucknow to Kanpur at the speed of light.

• What is your average speed?

CS636 Swarnendu Biswas 45

Amdahl’s Law Formulation

• Let a program P have N operations

• Assumption: An operation (executed serially) takes one time unit

• Time taken to execute P: 𝑁

• Let proportion P of the program be parallelizable

• Time taken for the serial portion = 1 − 𝑃 𝑁

• Assume parallel portion can be accelerated by a factor of s

• Time taken by optimized implementation: 1 − 𝑃 𝑁 +
𝑃𝑁

𝑠

CS636 Swarnendu Biswas 46

Amdahl’s Law Formulation

• Speedup factor: =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑝𝑟𝑜𝑔𝑟𝑎𝑚

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑝𝑟𝑜𝑔𝑟𝑎𝑚

CS636 Swarnendu Biswas 47

=
1

(1 − 𝑃) +
𝑃
𝑠

=
𝑁

𝐼 − 𝑃 𝑁 +
𝑃
𝑠

Nuances of Amdahl’s Law

CS636 Swarnendu Biswas 48

Even if speed up factor s ∞

Speed up =
1

1−𝑃

Speed up =
1

(1−𝑃)+
𝑃

𝑠

CS636 Swarnendu Biswas 49

https://en.wikipedia.org/wiki/Amdahl%27s_law

Compute speed up

• Suppose we have a program P that is composed of three modules A,
B, and C. A takes up 20%, B takes 30%, and C takes 50%.

• Suppose we run P on new hardware that speeds up A by 50% and B
by 4X but does not impact C.

• What is the overall speedup of P?

CS636 Swarnendu Biswas 50

Gustafson’s Law

• Amdahl’s Law assumes that the problem size does not change with
number of resources

• Gustafson’s Law
• Computation time is constant instead of problem size

• Increase resources to solve bigger computational problems in the same time

CS636 Swarnendu Biswas 51

System Assumptions (same as Amdahl’s Law
derivation)
• Let us assume a program with 𝑁 operations

• Assumption: An operation (executed serially) takes one time unit

• Time taken to execute the program: 𝑁

• Let proportion P of the program be parallelizable

• Assume parallel portion can be accelerated by a factor of s

CS636 Swarnendu Biswas 52

Gustafson’s Law

• Now that we have more resources, the execution time will hopefully
decrease

• But the goal is to do more work in the original execution time

• Original problem size (Amdahl’s law): 𝑃𝑁 + 1 − 𝑃 𝑁

• New problem size: 𝑃𝑠𝑁 + 1 − 𝑃 𝑁

• Execution time on single processor: 𝑃𝑠𝑁 + 1 − 𝑃 𝑁

• Execution time on multiprocessor:
𝑃𝑠𝑁

𝑠
+ 1 − 𝑃 𝑁

CS636 Swarnendu Biswas 53

Gustafson’s Law

• Original problem size (Amdahl’s law): 𝑃𝑁 + 1 − 𝑃 𝑁

• New problem size: 𝑃𝑠𝑁 + 1 − 𝑃 𝑁

• Execution time on single processor: 𝑃𝑠𝑁 + 1 − 𝑃 𝑁

• Execution time on multiprocessor:
𝑃𝑠𝑁

𝑠
+ 1 − 𝑃 𝑁

• Speedup:
𝑃𝑠𝑁+ 1−𝑃 𝑁
𝑃𝑠𝑁

𝑠
+ 1−𝑃 𝑁

=
𝑃𝑠+ 1−𝑃

𝑃+(1−𝑃)
= 𝑃𝑠 + (1 − 𝑃)

CS636 Swarnendu Biswas 54

Amdahl’s vs Gustafson’s Law

CS636 Swarnendu Biswas 55

Amdahl’s law – If you have 10 more CPUs, then how fast
can you solve a given problem?

Gustafson’s law – Having 10 more CPUs allows you to solve
a larger problem in the same amount of time.

References

• Keshav Pingali – CS 377P: Programming for Performance, UT Austin.

• D. Sorin et al. – A Primer on Memory Consistency and Cache Coherence

CS636 Swarnendu Biswas 56

